Software Fault Isolation for Robust Compilation P
IVERSITY Ana Nora Evans, University of Virginia and INRIA Paris* ClAR _—

7VIRGINIA

Is Software Secure? Verification vs Testing Contributions

[Voiocraviny recan s wiogeione [N SR cCNCA & = The latest macOS update doesn’t quite fix the

macOS root login bug

e r oot s oy samn s HOW the KRACK attack destroys nearly all g o v [neee | vne |
- ETSSS S S S WieFi security

. - Andmme.omxis»pfcfau.yjard,bmauaavioesarevuln G'b\ Key Relnsta”atlon Attacks t,k, o Mac an ,
: : % Breaking WPAZ2 by forcing nonce reuse &

<+ Demonstrated that robust compilation can be realized on a RISC processor

Can they coexist?
s testing still
necessary?

e e e < Targeted random generation of low-level code
Even verified implementations

= Unsei meTen | on
4 can have serious vulnerabilities.

. |
|
remains X

15 CVE-2017-1002015 82 o |

Dubbed \ the attack "abuses design or

<+ Novel application of property based testing to compilers and safety properties of generated code

Property Based Testing

Goals: Memory unsafe source language with PFC}dUCeS trace in Generators of intermediate programs: Run in Intermediate Target Level Tests:
undefined behavior, enriched with a notion mtermeil.late % Used frequency combinators to increase the Rancliotmly Gg.nefcrated Semantics . oAy TR e % Generated a complete machine state including
1. Allow reasoning about safety f : : >emantics likelihood of tested behavior ntermediate : registers and memory
. mponent with the f win =t . and Execution Result . : : ..
Properties at the source level. 0 COt p‘Ote. twith the follo S > |~ |PlC2]c2)c3 ' > [g % Generated valid intermediate memory Program M Tes’gedla step II:] e rel.at|c|)qnal semantﬁ.s 'S
o . CONStraints: ‘ % Generated groups of instructions to avoid l Compile giqngllj\{gtirrlt With a step in the RISC machine
2. Limit the pot.entla.\l damage of corrupt <+ A component can write only In its own =k undesirable undefined behaviors lilfe: < Proof of d.ecidability of the step relation as
(low-level) lbraries. memory. : BT ooy st
A low-level compromised component < Each component defines an interface C,| = |Plc1]c2]c3 < f:e”e'“atedldes“ed Uneiiinee) [DEEOrS, lR e .
. or example: un in Target Semantics Re Shrinker:
cannot cause more harm than a source > A list of procedures others can call produces trace <P store (random address register)) .
level one could. : : Compiles i tarcet (random register) Target Trace, Quickchicl < Build call graph .
> A list of procedures It can call o In af?{? Execution Result, and g'hcecke'r“ m % Up to a maximum depth either
. semantics ; o
Implementation: < Execution can be transferred to a v Execution Log i gﬁﬁlﬂfi :l?e”:jepcrilclzcljwsth Nop
) : component onl) i >
< Proof-of-concept two-pass compiler P y : Target Program | | > [jt;] C‘fmp'ler correctness
. . . > By calls allowed by interface < Used CompCert definition based on traces of
% Galina with Coq proofs for source to o . cross-component calls and returns Related Work:
intermediate Pass > Returns from cross-component calls Formal Defmltlon (Intermedlate to Target): < All undefined behaviors allowed, thus the target 1. John Hughes. QuickCheck Testing for Fun and Profit. (PADL'07).
& One back-end using Software Fault \V/ PC (C NP)\LUT,:> 35 ¢t (SNP)U'T.' A<t program may produce longer traces. 2. Zoe Paraskevopoulou, Catalin Hritcu, Maxime Dénes, Leonidas Lampropoulos, and Benjamin Pierce. Foundational Property-Based Testing.
(2 = ° °
. Target d d > % Discard programs that do not terminate in a (ITP 2,015)', o , oL L , ,
Isolation (presented here), another maximum number of steps. 3. Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky, Dimitrios Vytiniotis, Arthur Azevedo de Amorim, Leonidas
usine hardware tages oo _ : - . Lampropoulos. Testing noninterference, quickly. (ICFP 2013).
g g : :'Of?d. store RISC machine Guglielmo Fachini, C&talin Hritcu, Marco Stronati, Ana Nora Evans * Many programs with empty trace. 4. Benjamin C. Pierce, Leonidas Lampropoulos, Zoe Paraskevopoulou. Generating Good Generators for Inductive Relations. (POPL 2018).
* INnTINnite memaor S ’ ' . C : '
Formal Definition (Source to Intermediate): : te . e ory Theo Laurent, Arthur Azevedo de Amorim, Benjamin C. Pierce,
VP Cp. C; = (P4)t= JC t.Co = P Ut A t'<pt < No specialized hardware for component Andrew Tolmach. Formally Secure Compilation of Unsafe Low-Level Invariant Correctness Condition Information Logged Discarded Tests
rotection Components. (PriSC 2018). . . :
P y Component writes *%* Address and program counter In . : : :
& inside its data memor the same component ** Program counter Intermediate programs that fail to execute in
. y . i P ¢ Store address intermediate semantics with errors unrelated to data
° %* at the top of the protected | ** Address isthe top of the protected | ,
SOﬂWa re Fau lt ISOlatlﬂn <tack. <tack * Top of the protected stack memory access.
Jumps ** Program counter and the target
N Ps address are in the same component| %* Program counter Intermediate programs that fail to execute in
% within component
. ¢ The target add i tly th ¢ Value of target regist int diat tics with lated t
. . _ o X get address Is exactly the » Value of target register Intermediate semantics with errors unrelated to
Com Pl ler transformation to preve nt: Cross Component Call Stack * ataddresses stored at the same as the one stored at thetop | <* Value at the top of the protected stack execution transfer.
top of the protected stack.
: diate of the protected stack.
1. Unsafe memory writes intermedia Target Code , P —
2. U nsafe Cross-com po nent ju m pS o jal .p’ is not maske.d! Cross-component call stack is The LIFO policy is respected .;‘ Topgof the stack register Intermediate programs that fail to initialize correctly in
)] : o B - Can jump to an unaligned safe. y ‘ .) : the intermediate semantics.
Caller ‘call P . y :jal P ' address. ¢ Operation type (push/pop) with argument.
Component : ! i
M ' e ' : : : : : Intermediate programs that fail to initialize correctly
________________ _) oo X :)
MemOry Layou't Callee : ; %hal : Compiler Correctness The intermediate trace Is a sublist of . Intermediate trace and programs that do not terminate in a maximum
] . -7 Nha T : the target trace. *%* Target trace ber of i either i di
Component - : P’: push ra: The halt prevents stack number ot step In either intermediate or target.
Reserved Component1 | Component2 | Component3 | Protected | Component1 | Component2 | Component 3 [~ | [corru ptlon l?y preparmg
(Code) (Code) (Code) (Code) Stack (Data) (Data) (Data) :‘ P ‘ :] ‘ P ‘ [an ad.d Fess II] ra and "
: - ' ' mpin P’.
Init Code Slot 0 Slot 0 Slot 0 Slot 1 Slot 1 Slot 1 Slot 1 jumping to ResearCh Quesltlons
Unused Slot 2 Slot 2 Slot 2 Slot 3 Slot 3 Slot 3 Slot 3 _ [" !
Unused Slot 4 Slot 4 Slot 4 Slot 5 Slot 5 Slot 5 Slot 5 : pop ra : * means aligned address. . Can property base(.j testing be used to Store Tests Jump Test
return :jump ra : test safety properties of a program? Other B Halted Discarded Halted Avg dynamic Avg static
................................... : : i - N Test Type instructions instructions
S Ut S a7 (A A5 i Out Of Fuel Other Out Of Fuel
Internal component stack: formulated in executable form. Store 58 51
1 < Managed by the source . Do randomly generated programs test the
TranSformatlﬂnS Examples Protection of cross-component stack: to intermediate pass desired property? 3 -
< Writes only in the data slots of the Stored in t{‘,e Mostly (see right). Jump -/
(component,block,offset) Slot Component | Offset component prevent: SO POIIEIS & ML) : o
: : o . Protected from other . Is testing effective in finding the Stack 69 52
Unbounded n bits s bits > Code Injected only In data slots component implementation errors? Undefined 1950
B > Protected stack smashing Not protect from itself Testing found errors in the compiler as g ey Undefined
RD « r o : : ll as in the testi R itself. 0 : : ,
p & 11111 6000 11111111 + Execution from code slots only prevents: ‘I’E"jtufes‘:Vnork:epfjv'e”fh];rg%‘;"g;es’ f:goq. 83% at least one internal store 84% at least one internal jump
store *rp rs RD <« RD | 20001 i 20000000 > Execution of any possible injected code Limitations: ' TR oot S ol
= . . What t tat test .
2 Alignment and the halt guard prevent ROP % only static interfaces at are the limitations o i esting versus Stack Protection Test Compiler Correctess Test Ork was partla y. ”
proofs and relational form? performed while a visiting
store *RD rs * no system calls . Infinite loops and non-terminating Discarded PhD student at INRIA Paris i
- <+ no compiler optimizations. programs (compiler correctness test Bnz Undef B.. 28 Discarded student a aris in
RT« r & 11110 0000 111 | 000 is not complete). Jmp Undef Halted SUIMAIET @iF 2007, G e
Related Work . Existential quantifiers o 4 8.2% e SECOMP Project.
. alte
1 X i EmptyStack) 0%
Jmp~r - RT« RT | 00000 S 00000000 1. Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient Software- Advisors:
: ” based Fault Isolation. (SOSP 1993). NotintinReg Cstslin Hri
Jmp RT . 1 1 - i i MissingBlock atatin rltcu
% Reserved registers: RD, RT, the constants 2. Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward Gan. M Lou Soff
~ above (masks). RockSalt: Better, Faster, Stronger SFl for the x86. (PLDI 2012). Out Of Fuel JumpNotAddre... ary Lou 50 a
Execution continues with a corrupt * CRr?é#geset to proper values on component 3. Martin Abadi, Mihai Budali, Ulfar Erlingsson, Jay Ligatti. 2009. Control-flow integrity Marco Stronati
address inside the current component! ' principles, implementations, and applications. (ACM TISS 2013). 52% at least two stack operations 10% non-empty trace

