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Property Based Testing

Contributions

Results

Verification vs Testing
❖ Demonstrated that robust compilation can be realized on a RISC processor

❖ Targeted random generation of low-level code

❖ Novel application of property based testing to compilers and safety properties of generated code

Compiler transformation to prevent:
1. Unsafe memory writes
2. Unsafe cross-component jumps
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Is Software Secure?
Can they coexist?

Is testing still 
necessary?

store *rp rs

RD ← rp & 1111111111111 0000

RD ← RD | 0000000000001 cid

store *RD rs

jmp *r

RT← r & 11111110 0000

RT← RT | 0000000000000 cid

jmp *RT

000

call P jal P’

*halt
P’: push ra

*pop ra
jump ra
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n bits s bitsUnbounded
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Invariant Correctness Condition Information Logged Discarded Tests

Component writes
❖ inside its data memory
❖ at the top of the  protected 

stack.

❖ Address and program counter in 
the same component

❖ Address is the top of the protected 
stack

❖ Program counter
❖ Store address 
❖ Top of the protected stack

Intermediate programs that fail to execute in 
intermediate semantics with errors unrelated to data 
memory access.

Jumps
❖ within component 
❖ at addresses stored at the 

top of the protected stack.

❖ Program counter and the target 
address are in the same component 

❖ The target address is exactly the 
same as the one stored at  the top 
of the protected stack.

❖ Program counter
❖ Value of target register
❖ Value at the top of the protected stack

Intermediate programs that fail to execute in 
intermediate semantics with errors unrelated to 
execution transfer.

Cross-component call stack is 
safe. The LIFO policy is respected.

❖ Program counter 
❖ Top of the stack register 
❖ Operation type (push/pop) with argument.

Intermediate programs that fail to initialize correctly in 
the intermediate semantics.

Compiler Correctness The intermediate trace is a sublist of 
the target trace.

❖ Intermediate trace
❖ Target trace

Intermediate programs that fail to initialize correctly 
and programs that do not terminate in a maximum 
number of step in either intermediate or target.

Unsafe memory 
handling remains 
common.

Even verified implementations 
can have serious vulnerabilities.
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The halt prevents stack 
corruption by preparing 
an address in ra and 
jumping to P’.
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Shrinker:
❖ Build call graph
❖ Up to a maximum depth either
➢ Replace some calls in with Nop
➢ Shrink called procedures

Target Level Tests:
❖ Generated a complete machine state including 

registers and memory
❖ Tested a step in the relational semantics is 

equivalent with a step in the RISC machine 
simulator.

❖ Proof of decidability of the step relation as 
complicated as a proof of the theorem itself

Write and test the semantics of a 
real RISC machine (e.g., Atmel 
AtTiny 85 microcontroller).

Compiler correctness
❖ Used CompCert definition based on traces of 

cross-component calls and returns
❖ All undefined behaviors allowed, thus the target 

program may produce longer traces.
❖ Discard programs that do not terminate in a 

maximum number of steps.
❖ Many programs with empty trace.

Slot(component,block,offset)

Generators of intermediate programs:
❖ Used frequency combinators to increase the 

likelihood of tested behavior
❖ Generated valid intermediate memory 
❖ Generated groups of instructions to avoid 

undesirable undefined behaviors like:
const (random int) (random register)
bnz (reg from const) (random label)

❖ Generated desired undefined behaviors, 
for example:

store (random address register) 
(random register)

Future Work

Protection of cross-component stack: 
❖ Writes only in the data slots of the 

component prevent:
➢ Code injected only in data slots
➢ Protected stack smashing

❖ Execution from code slots only prevents:
➢ Execution of any possible injected code

❖ Alignment and the halt guard prevent ROP 
Limitations: 
v only static interfaces
v no system calls 
v no compiler optimizations.

Robust Compilation
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Implementation: 
❖ Proof-of-concept two-pass compiler
❖ Galina with Coq proofs for source to 

intermediate pass
❖ One back-end using Software Fault 

Isolation (presented here), another 
using hardware tags

Ca

t’

Produces  trace in 
intermediate  

semantics

∃

⋈ tS P C1

Formal Definition (Intermediate to Target):
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Goals:

1. Allow reasoning about safety 
properties at the source level.

2. Limit the potential damage of corrupt 
(low-level)  libraries. 

A low-level compromised component 
cannot cause more harm than a source 
level one could.

Memory unsafe source language with 
undefined behavior, enriched with a notion 
of component with the following 
constraints:

❖ A component can write only in its own 
memory.

❖ Each component defines an interface 
➢ A list of procedures others can call
➢ A list of procedures it can call

❖ Execution can be transferred to a 
component only 
➢ By calls allowed by interface
➢ Returns from cross-component calls

Target

❖ Load-store RISC machine
❖ Infinite memory
❖ No specialized hardware for component 

protection.

Target  Program

Compiles  
to

Produces  trace 
in target  

semantics

Formal Definition (Source to Intermediate):
∀P CT. CT ⋈ (P↓)⇓t⇒∃CS t’.CS ⋈ P ⇓t’ ⋀ t’≼Pt

Memory Layout
Reserved

(Code)
Component 1

(Code)
Component 2

(Code)
Component 3

(Code)
Protected 

Stack
Component 1

(Data)
Component 2

(Data)
Component 3

(Data)

Init Code Slot 0 Slot 0 Slot 0 Slot 1 Slot 1 Slot 1 Slot 1

Unused Slot 2 Slot 2 Slot 2 Slot 3 Slot 3 Slot 3 Slot 3

Unused Slot 4 Slot 4 Slot 4 Slot 5 Slot 5 Slot 5 Slot 5

... ... ... ... ... ... ... ...

Transformations Examples

❖ Reserved registers: RD, RT, the constants 
above (masks).

❖ RD, RT set to proper values on component 
change.

Cross-Component Call Stack
Intermediate 

Code
Target Code

Execution continues with a corrupt 
address inside the current component! 

jal P’ is not masked!
Can jump to an unaligned 
address.

Internal component stack:
❖ Managed by the source 

to intermediate pass
❖ Stored in the 

component’s memory
❖ Protected from other 

component
❖ Not protect from itself

Research Questions
1. Can property based testing be used to 

test safety properties of a program?
Yes, if the safety properties are 
formulated in executable form. 

2. Do randomly generated programs test the 
desired property?
Mostly (see right).

3. Is testing effective in finding the 
implementation errors?
Testing found errors in the compiler as 
well as in the testing framework itself.
Future work: prove the properties in Coq.

4. What are the limitations of testing versus 
proofs and relational form?
a. Infinite loops and non-terminating 

programs (compiler correctness test 
is not complete).

b. Existential quantifiers 

Test Type
Avg dynamic
instructions

Avg static 
instructions

Store 58 51

Jump 31 28.7

Stack 69 52

83% at least one internal store

10% non-empty trace

84% at least one internal jump

52% at least two stack operations 

* means aligned address.


