
Software Fault Isolation for Robust Compilation
Ana Nora Evans, University of Virginia and INRIA Paris*

Software Fault Isolation

Property Based Testing

Contributions

Results

Verification vs Testing
❖ Demonstrated that robust compilation can be realized on a RISC processor

❖ Targeted random generation of low-level code

❖ Novel application of property based testing to compilers and safety properties of generated code

Compiler transformation to prevent:
1. Unsafe memory writes
2. Unsafe cross-component jumps

Randomly Generated
Intermediate

Program

Intermediate Trace
and Execution Result

Run in Intermediate
Semantics

Target Program

Target Trace,
Execution Result, and

Execution Log

Compile

Run in Target Semantics Passed

Failed

Discard

Is Software Secure?
Can they coexist?

Is testing still
necessary?

store *rp rs

RD ← rp & 1111111111111 0000

RD ← RD | 0000000000001 cid

store *RD rs

jmp *r

RT← r & 11111110 0000

RT← RT | 0000000000000 cid

jmp *RT

000

call P jal P’

*halt
P’: push ra

*pop ra
jump ra

OffsetComponent
n bits s bitsUnbounded

Related Work:
1. Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient Software-

based Fault Isolation. (SOSP 1993).
2. Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward Gan.

RockSalt: Better, Faster, Stronger SFI for the x86. (PLDI 2012).
3. Martin Abadi, Mihai Budai, Ulfar Erlingsson, Jay Ligatti. 2009. Control-flow integrity

principles, implementations, and applications. (ACM TISS 2013).

Caller
Component

Callee
Component

Related Work:
1. John Hughes. QuickCheck Testing for Fun and Profit. (PADL’07).
2. Zoe Paraskevopoulou, Cătălin Hriţcu, Maxime Dénès, Leonidas Lampropoulos, and Benjamin Pierce. Foundational Property-Based Testing.

(ITP 2015).
3. Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky, Dimitrios Vytiniotis, Arthur Azevedo de Amorim, Leonidas

Lampropoulos. Testing noninterference, quickly. (ICFP 2013).
4. Benjamin C. Pierce, Leonidas Lampropoulos, Zoe Paraskevopoulou. Generating Good Generators for Inductive Relations. (POPL 2018).

Invariant Correctness Condition Information Logged Discarded Tests

Component writes
❖ inside its data memory
❖ at the top of the protected

stack.

❖ Address and program counter in
the same component

❖ Address is the top of the protected
stack

❖ Program counter
❖ Store address
❖ Top of the protected stack

Intermediate programs that fail to execute in
intermediate semantics with errors unrelated to data
memory access.

Jumps
❖ within component
❖ at addresses stored at the

top of the protected stack.

❖ Program counter and the target
address are in the same component

❖ The target address is exactly the
same as the one stored at the top
of the protected stack.

❖ Program counter
❖ Value of target register
❖ Value at the top of the protected stack

Intermediate programs that fail to execute in
intermediate semantics with errors unrelated to
execution transfer.

Cross-component call stack is
safe. The LIFO policy is respected.

❖ Program counter
❖ Top of the stack register
❖ Operation type (push/pop) with argument.

Intermediate programs that fail to initialize correctly in
the intermediate semantics.

Compiler Correctness The intermediate trace is a sublist of
the target trace.

❖ Intermediate trace
❖ Target trace

Intermediate programs that fail to initialize correctly
and programs that do not terminate in a maximum
number of step in either intermediate or target.

Unsafe memory
handling remains
common.

Even verified implementations
can have serious vulnerabilities.

return

P P

The halt prevents stack
corruption by preparing
an address in ra and
jumping to P’.

QuickChick
Checker

Shrinker:
❖ Build call graph
❖ Up to a maximum depth either
➢ Replace some calls in with Nop
➢ Shrink called procedures

Target Level Tests:
❖ Generated a complete machine state including

registers and memory
❖ Tested a step in the relational semantics is

equivalent with a step in the RISC machine
simulator.

❖ Proof of decidability of the step relation as
complicated as a proof of the theorem itself

Write and test the semantics of a
real RISC machine (e.g., Atmel
AtTiny 85 microcontroller).

Compiler correctness
❖ Used CompCert definition based on traces of

cross-component calls and returns
❖ All undefined behaviors allowed, thus the target

program may produce longer traces.
❖ Discard programs that do not terminate in a

maximum number of steps.
❖ Many programs with empty trace.

Slot(component,block,offset)

Generators of intermediate programs:
❖ Used frequency combinators to increase the

likelihood of tested behavior
❖ Generated valid intermediate memory
❖ Generated groups of instructions to avoid

undesirable undefined behaviors like:
const (random int) (random register)
bnz (reg from const) (random label)

❖ Generated desired undefined behaviors,
for example:

store (random address register)
(random register)

Future Work

Protection of cross-component stack:
❖ Writes only in the data slots of the

component prevent:
➢ Code injected only in data slots
➢ Protected stack smashing

❖ Execution from code slots only prevents:
➢ Execution of any possible injected code

❖ Alignment and the halt guard prevent ROP
Limitations:
v only static interfaces
v no system calls
v no compiler optimizations.

Robust Compilation

* Work was partially
performed while a visiting
PhD student at INRIA Paris in
Summer of 2017, on the ERC
SECOMP Project.

Advisors:
Cătălin Hriţcu
Mary Lou Soffa
Marco Stronati

Implementation:
❖ Proof-of-concept two-pass compiler
❖ Galina with Coq proofs for source to

intermediate pass
❖ One back-end using Software Fault

Isolation (presented here), another
using hardware tags

Ca

t’

Produces trace in
intermediate

semantics

∃

⋈ tS P C1

Formal Definition (Intermediate to Target):
∀P Ca. (Ca⋈P)↓⇓t⇒∃S t’.(S⋈P)⇓t’ ⋀ t’≼Pt

C2 C3

Guglielmo Fachini, Cătălin Hriţcu, Marco Stronati, Ana Nora Evans,
Théo Laurent, Arthur Azevedo de Amorim, Benjamin C. Pierce,
Andrew Tolmach. Formally Secure Compilation of Unsafe Low-Level
Components. (PriSC 2018).

⋈ P C1 C2 C3

≼P

Goals:

1. Allow reasoning about safety
properties at the source level.

2. Limit the potential damage of corrupt
(low-level) libraries.

A low-level compromised component
cannot cause more harm than a source
level one could.

Memory unsafe source language with
undefined behavior, enriched with a notion
of component with the following
constraints:

❖ A component can write only in its own
memory.

❖ Each component defines an interface
➢ A list of procedures others can call
➢ A list of procedures it can call

❖ Execution can be transferred to a
component only
➢ By calls allowed by interface
➢ Returns from cross-component calls

Target

❖ Load-store RISC machine
❖ Infinite memory
❖ No specialized hardware for component

protection.

Target Program

Compiles
to

Produces trace
in target

semantics

Formal Definition (Source to Intermediate):
∀P CT. CT ⋈ (P↓)⇓t⇒∃CS t’.CS ⋈ P ⇓t’ ⋀ t’≼Pt

Memory Layout
Reserved

(Code)
Component 1

(Code)
Component 2

(Code)
Component 3

(Code)
Protected

Stack
Component 1

(Data)
Component 2

(Data)
Component 3

(Data)

Init Code Slot 0 Slot 0 Slot 0 Slot 1 Slot 1 Slot 1 Slot 1

Unused Slot 2 Slot 2 Slot 2 Slot 3 Slot 3 Slot 3 Slot 3

Unused Slot 4 Slot 4 Slot 4 Slot 5 Slot 5 Slot 5 Slot 5

...

Transformations Examples

❖ Reserved registers: RD, RT, the constants
above (masks).

❖ RD, RT set to proper values on component
change.

Cross-Component Call Stack
Intermediate

Code
Target Code

Execution continues with a corrupt
address inside the current component!

jal P’ is not masked!
Can jump to an unaligned
address.

Internal component stack:
❖ Managed by the source

to intermediate pass
❖ Stored in the

component’s memory
❖ Protected from other

component
❖ Not protect from itself

Research Questions
1. Can property based testing be used to

test safety properties of a program?
Yes, if the safety properties are
formulated in executable form.

2. Do randomly generated programs test the
desired property?
Mostly (see right).

3. Is testing effective in finding the
implementation errors?
Testing found errors in the compiler as
well as in the testing framework itself.
Future work: prove the properties in Coq.

4. What are the limitations of testing versus
proofs and relational form?
a. Infinite loops and non-terminating

programs (compiler correctness test
is not complete).

b. Existential quantifiers

Test Type
Avg dynamic
instructions

Avg static
instructions

Store 58 51

Jump 31 28.7

Stack 69 52

83% at least one internal store

10% non-empty trace

84% at least one internal jump

52% at least two stack operations

* means aligned address.

